PIC系列单片机程序设计基础

    1、程序的基本格式
  先介绍二条伪指令:
  EQU ——标号赋值伪指令
  ORG ——地址定义伪指令
  PIC16C5X在RESET后指令计算器PC被置为全“1”,所以PIC16C5X几种型号芯片的复位地址为:
   PIC16C54/55:1FFH
   PIC16C56:3FFH
   PIC16C57/58:7FFH
  一般来说,PIC的源程序并没有要求统一的格式,大家可以根据自己的风格来编写。但这里我们推荐一种清晰明了的格式供参考。
  TITLE This is …… ;程序标题
  ;--------------------------------------
  ;名称定义和变量定义
  ;--------------------------------------
  F0    EQU  0
  RTCC   EQU  1
  PC    EQU  2
  STATUS  EQU  3
  FSR   EQU  4
  RA    EQU  5
  RB    EQU  6
  RC    EQU  7  
       ┋
  PIC16C54 EQU 1FFH ;芯片复位地址
  PIC16C56 EQU 3FFH
  PIC16C57 EQU 7FFH
  ;-----------------------------------------
  ORG PIC16C54 GOTO MAIN   ;在复位地址处转入主程序
  ORG   0          ;在0000H开始存放程序
  ;-----------------------------------------
  ;子程序区
  ;-----------------------------------------
  DELAY MOVLW 255
      ┋
      RETLW 0
  ;------------------------------------------
  ;主程序区
  ;------------------------------------------
  MAIN
      MOVLW B‘00000000’
      TRIS RB       ;RB已由伪指令定义为6,即B口
       ┋
  LOOP
      BSF RB,7 CALL DELAY        
      BCF RB,7 CALL DELAY
        ┋
      GOTO LOOP
  ;-------------------------------------------
       END       ;程序结束
   注:MAIN标号一定要处在0页面内。
  2、程序设计基础
  1) 设置 I/O 口的输入/输出方向
  PIC16C5X的I/O 口皆为双向可编程,即每一根I/O 端线都可分别单独地由程序设置为输入或输出。这个过程由写I/O控制寄存器TRIS f来实现,写入值为“1”,则为输入;写入值为“0”,则为输出。
      MOVLW 0FH  ;0000 1111(0FH)
            输入 输出
      TRIS 6    ;将W中的0FH写入B口控制器,
             ;B口高4位为输出,低4位为输入。
      MOVLW 0C0H ; 11 000000(0C0H)
              RB4,RB5输出0 RB6,RB7输出1
  2) 检查寄存器是否为零
  如果要判断一个寄存器内容是否为零,很简单,现以寄存器F10为例:
      MOVF 10,1      ;F10→F10,结果影响零标记状态位Z
      BTFSS STATUS,Z    ;F10为零则跳
      GOTO NZ        ;Z=0即F10不为零转入标号NZ处程序
       ┋          ;Z=1即F10=0处理程序
  3) 比较二个寄存器的大小
  要比较二个寄存器的大小,可以将它们做减法运算,然后根据状态位C来判断。注意,相减的结果放入W,则不会影响二寄存器原有的值。
  例如F8和F9二个寄存器要比较大小:
       MOVF 8,0       ;F8→W
       SUBWF 9,0      ;F9—W(F8)→W
       BTFSC STATUS,Z    ;判断F8=F9否
       GOTO F8=F9
       BTFSC STATUS,C    ;C=0则跳
       GOTO F9>F8       ;C=1相减结果为正,F9>F8
       GOTO F9<F8       ;C=0相减结果为负,F9<F8
         ┋
   4) 循环n次的程序
  如果要使某段程序循环执行n次,可以用一个寄存器作计数器。下例以F10做计数器,使程序循环8次。
       COUNT EQU 10     ;定义F10名称为COUNT(计数器)
          ┋
       MOVLW 8
       MOVWF COUNT LOOP   ;循环体
   LOOP
           ┋
       DECFSZ COUNT,1    ;COUNT减1,结果为零则跳
       GOTO LOOP       ;结果不为零,继续循环
           ┋       ;结果为零,跳出循环
   5)“IF……THEN……”格式的程序
  下面以“IF X=Y THEN GOTO NEXT”格式为例。
       MOVF X,0      ;X→W
       SUBWF Y,0     ;Y—W(X)→W
       BTFSC STATUS,Z   ;X=Y 否
       GOTO NEXT      ;X=Y,跳到NEXT去执行。
          ┋       ;X≠Y
   6)“FOR……NEXT”格式的程序
  “FOR……NEXT”程序使循环在某个范围内进行。下例是“FOR X=0 TO 5”格式的程序。F10放X的初值,F11放X的终值。
      START  EQU  10
      DAEND  EQU  11
           ┋
      MOVLW 0
      MOVWF START     ; 0→START(F10)
      MOVLW 5
      MOVWF DAEND     ;5→DAEND(F11)
   LOOP
           ┋
      INCF START,1     ;START值加1
      MOVF START,0
      SUBWF DAEND,0     ;START=DAEND ?(X=5否)
      BTFSS STATUS,Z
      GOTO LOOP        ;X<5,继续循环
           ┋       ;X=5,结束循环
   7)“DO WHILE……END”格式的程序
  “DO WHILE……END”程序是在符合条件下执行循环。下例是“DO WHILE X=1”格式的程序。F10放X的值。
      X  EQU  10
        ┋
      MOVLW  1
      MOVWF  X     ;1→X(F10),作为初值
   LOOP
        ┋
      MOVLW 1
      SUBWF X,0
      BTFSS STATUS,Z   ;X=1否?
      GOTO LOOP      ;X=1继续循环
        ┋        ;X≠1跳出循环
   8) 查表程序
  查表是程序中经常用到的一种操作。下例是将十进制0~9转换成7段LED数字显示值。若以B口的RB0~RB6来驱动LED的a~g线段,则有如下关系:

     

  设LED为共阳,则0~9数字对应的线段值如下表:

  PIC的查表程序可以利用子程序带值返回的特点来实现。具体是在主程序中先取表数据地址放入W,接着调用子程序,子程序的第一条指令将W置入PC,则程序跳到数据地址的地方,再由“RETLW”指令将数据放入W返回到主程序。下面程序以F10放表头地址。
      MOVLW  TABLE     ;表头地址→F10  
      MOVWF  10
          ┋
      MOVLW  1        ;1→W,准备取“1”的线段值
      ADDWF  10,1      ;F10+W =“1”的数据地址
      CALL  CONVERT
      MOVWF  6        ;线段值置到B口,点亮LED
          ┋
  CONVERT MOVWF  2        ;W→PC TABLE
      RETLW  0C0H      ;“0”线段值
      RETLW  0F9H      ;“1”线段值
          ┋
      RETLW  90H       ;“9”线段值
   9)“READ……DATA,RESTORE”格式程序
  “READ……DATA”程序是每次读取数据表的一个数据,然后将数据指针加1,准备取下一个数据。下例程序中以F10为数据表起始地址,F11做数据指针。
      POINTER  EQU  11   ;定义F11名称为POINTER
          ┋
      MOVLW   DATA
      MOVWF   10     ;数据表头地址→F10
      CLRF   POINTER   ;数据指针清零
          ┋
      MOVF   POINTER,0  
      ADDWF 10,0      ;W =F10+POINTER
          ┋
      INCF    POINTER,1  ;指针加1
      CALL CONVERT      ;调子程序,取表格数据
          ┋
  CONVERT MOVWF   2    ;数据地址→PC
  DATA  RETLW   20H    ;数据
          ┋
      RETLW 15H      ;数据
  如果要执行“RESTORE”,只要执行一条“CLRF POINTER”即可。
  10) 延时程序
  如果延时时间较短,可以让程序简单地连续执行几条空操作指令“NOP”。如果延时时间长,可以用循环来实现。下例以F10计算,使循环重复执行100次。
      MOVLW D‘100’
      MOVWF 10
  LOOP  DECFSZ 10,1   ;F10—1→F10,结果为零则跳
      GOTO LOOP
       ┋
  延时程序中计算指令执行的时间和即为延时时间。如果使用4MHz振荡,则每个指令周期为1μS。所以单周期指令时间为1μS,双周期指令时间为2μS。在上例的LOOP循环延时时间即为:(1+2)*100+2=302(μS)。在循环中插入空操作指令即可延长延时时间:
      MOVLW  D‘100’
      MOVWF  10
  LOOP   NOP
       NOP
       NOP
      DECFSZ 10,1
      GOTO LOOP
        ┋
  延时时间=(1+1+1+1+2)*100+2=602(μS)。
  用几个循环嵌套的方式可以大大延长延时时间。下例用2个循环来做延时:
      MOVLW   D‘100’
      MOVWF   10
  LOOP  MOVLW   D‘16’
      MOVWF   11
  LOOP1  DECFSZ   11,1
      GOTO    LOOP1
      DECFSZ   10,1
      GOTO LOOP
       ┋
  延时时间=1+1+[1+1+(1+2)*16-1+1+2]*100-1=5201(μS)
  11) RTCC计数器的使用
  RTCC是一个脉冲计数器,它的计数脉冲有二个来源,一个是从RTCC引脚输入的外部信号,一个是内部的指令时钟信号。可以用程序来选择其中一个信号源作为输入。RTCC可被程序用作计时之用;程序读取RTCC寄存器值以计算时间。当RTCC作为内部计时器使用时需将RTCC管脚接VDD或VSS,以减少干扰和耗电流。下例程序以RTCC做延时:
      RTCC  EQU  1
       ┋
      CLRF  RTCC    ;RTCC清0
      MOVLW  07H
      OPTION    ;选择预设倍数1:256→RTCC
   LOOP  MOVLW  255   ;RTCC计数终值
      SUBWF  RTCC,0
      BTFSS STATUS,Z   ;RTCC=255?
      GOTO LOOP
       ┋
  这个延时程序中,每过256个指令周期RTCC寄存器增1(分频比=1:256),设芯片使用4MHz振荡,则:
  延时时间=256*256=65536(μS)
  RTCC是自振式的,在它计数时,程序可以去做别的事情,只要隔一段时间去读取它,检测它的计数值即可。
  12) 寄存器体(BANK)的寻址
  对于PIC16C54/55/56,寄存器有32个,只有一个体(BANK),故不存在体寻址问题,对于PIC16C57/58来说,寄存器则有80个,分为4个体(BANK0-BANK3)。在对F4(FSR)的说明中可知,F4的bit6和bit5是寄存器体寻址位,其对应关系如下:

十进数
线段值
十进数
线段值
0
C0H
5
92H
1
C9H
6
82H
2
A4H
7
F8H
3
B0H
8
80H
4
99H
9
90H

  当芯片上电RESET后,F4的bit6,bit5是随机的,非上电的RESET则保持原先状态不变。
  下面的例子对BANK1和BANK2的30H及50H寄存器写入数据。
  例1.(设目前体选为BANK0)
      BSF   4,5    ;置位bit5=1,选择BANK1
      MOVLW  DATA
      MOVWF  10H    ; DATA→30H
      BCF   4,5
      BSF   4,6   ;bit6=1,bit5=0选择BANK2
      MOVWF  10H    ;DATA→50H
  从上例中我们看到,对某一体(BANK)中的寄存器进行读写,首先要先对F4中的体寻址位进行操作。实际应用中一般上电复位后先清F4的bit6和bit5为0,使之指向BANK0,以后再根据需要使其指向相应的体。
  注意,在例子中对30H寄存器(BANK1)和50H寄存器(BANK2)写数时,用的指令“MOVWF 10H”中寄存器地址写的都是“10H”,而不是读者预期的“MOVWF 30H”和“MOVWF 50H”,为什么?
  让我们回顾一下指令表。在PIC16C5X的所有有关寄存器的指令码中,寄存寻址位都只占5个位:fffff,只能寻址32个(00H—1FH)寄存器。所以要选址80个寄存器,还要再用二位体选址位PA1和PA0。当我们设置好体寻址位PA1和PA0,使之指向一个BANK,那么指令“MOVWF 10H”就是将W内容置入这个BANK中的相应寄存器内(10H,30H,50H,或70H)。
  有些设计者第一次接触体选址的概念,难免理解上有出入,下面是一个例子:
  例2:(设目前体选为BANK0)
      MOVLW  55H 
      MOVWF  30H   ;欲把55H→30H寄存器
      MOVLW  66H
      MOVWF  50H   ;欲把66H→50H寄存器
  以为“MOVWF 30H”一定能把W置入30H,“MOVWF 50H”一定能把W置入50H,这是错误的。因为这两条指令的实际效果是“MOVWF 10H”,原因上面已经说明过了。所以例2这段程序最后结果是F10H=66H,而真正的F30H和F50H并没有被操作到。
  建议:为使体选址的程序清晰明了,建议多用名称定义符来写程序,则不易混淆。   例3:假设在程序中用到BANK0,BANK1,BANK2的几个寄存器如下:

Bit6  Bit5
BANK
物理地址
 0    0
BANK0
10H~1FH
 0    1
BANK1
30H~3FH
 1    0
BANK2
50H~5FH
 1    1
BANK3
70H~7FH

       A   EQU  10H   ;BANK0
       B   EQU  10H   ;BANK1
       C   EQU  10H   ;BANK2
          ┋
       FSR  EQU  4
       Bit6  EQU  6
       Bit5  EQU  5
       DATA  EQU  55H
          ┋
       MOVLW  DATA
       MOVWF  A  
       BSF   FSR,Bit5
       MOVWF  B     ;DATA→F30H
       BCF   FSR,Bit5
       BSF   FSR,Bit6
       MOVWF  C     ;DATA→F50H
          ┋

  程序这样书写,相信体选址就不容易错了。
  13) 程序跨页面跳转和调用
  下面介绍PIC16C5X的程序存储区的页面概念和F3寄存器中的页面选址位PA1和PA0两位应用的实例。
  (1)“GOTO”跨页面
   例:设目前程序在0页面(PAGE0),欲用“GOTO”跳转到1页面的某个地方
KEY(PAGE1)。
       STATUS  EQU  3
       PA1   EQU  6
       PA0   EQU  5
           ┋
       BSF  STATUS,PA0  ;PA0=1,选择PAGE页面
       GOTO  KEY      ;跨页跳转到1页面的KEY
           ┋
       KEY   NOP     ;1页面的程序
           ┋
  (2)“CALL”跨页面
  例:设目前程序在0页面(PAGE0),现在要调用——放在1页面(PAGE1)的子程序DELAY。
           ┋
       BSF  STATUS,PA0   ;PA0=1,选择PAGE1页面
       CALL  DELAY      ;跨页调用
       BCF  STATUS,PA0   ;恢复0页面地址
           ┋
       DELAY NOP       ;1页面的子程序
           ┋
  注意:程序为跨页CALL而设了页面地址,从子程序返回后一定要恢复原来的页面地址。
  (3)程序跨页跳转和调用的编写
  读者看到这里,一定要问:我写源程序(.ASM)时,并不去注意每条指令的存放地址,我怎么知道这个GOTO是要跨页面的,那个CALL是需跨页面的? 的确,开始写源程序时并知道何时会发生跨页面跳转或调用,不过当你将源程序汇编时,就会自动给出。当汇编结果显示出:
       X X X(地址)“GOTO out of Range"
       X X X(地址)“CALL out of Range"
  这表明你的程序发生了跨页面的跳转和调用,而你的程序中在这些跨页GOTO和CALL之前还未设置好相应的页面地址。这时应该查看汇编生成的.LST文件,找到这些GOTO和CALL,并查看它们要跳转去的地址处在什么页面,然后再回到源程序(.ASM)做必要的修改。一直到你的源程序汇编通过(0 Errors and Warnnings)。
   (4)程序页面的连接
  程序4个页面连接处应该做一些处理。一般建议采用下面的格式: 即在进入另一个页面后,马上设置相应的页面地址位(PA1,PA0)。 页面处理是PIC16C5X编程中最麻烦的部分,不过并不难。只要做了一次实际的编程练习后,就能掌握了。
   
      


以上资料来自于互联网!编辑整理:五一电子加油站;网址:http://www.51dz.com
欢迎光临五一电子商城!免费学习电子技术,面向全国邮购电子元件、实验套件!
BANK0
地址
BANK1
地址
BANK2
地址
BANK3
地址
A
10H
B
30H
C
50H
·
70H
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·